Invariance and first integrals of continuous and discrete Hamiltonian equations
Authors
Vladimir Dorodnitsyn, Roman Kozlov
Abstract
In this paper we consider the relation between symmetries and first integrals for both continuous canonical Hamiltonian equations and discrete Hamiltonian equations. We observe that canonical Hamiltonian equations can be obtained by variational principle from an action functional and consider invariance properties of this functional as it is done in Lagrangian formalism. We rewrite the well--known Noether's identity in terms of the Hamiltonian function and symmetry operators. This approach, based on symmetries of the Hamiltonian action, provides a simple and clear way to construct first integrals of Hamiltonian equations without integration. A discrete analog of this identity is developed. It leads to a relation between symmetries and first integrals for discrete Hamiltonian equations that can be used to conserve structural properties of Hamiltonian equations in numerical implementation. The results are illustrated by a number of examples for both continuous and discrete Hamiltonian equations.